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INTRODUCTION 

Over the past three decades, much effort has been devoted to solving the 
inviscid flow over blunt bodies. Two basic approaches have been used: ( 1 )  
an inverse approach - where the shock wave is given and the body shape and 
details of the flow within the shock layer are unknown and ( 2 )  a direct 
approach - where the body shape is given and all details of the flow within 
the shock layer are unknown. (See ref. 1.) 

1 
For the inverse problem, the steady flow equations are usually .solved by 

marching inward from the shock wave to obtain the solution for the body. 
(See refs. 2 to 5.) 
elliptic-hyperbolic type, this initial value problem is ill posed and is 
inherently unstable. However, for some cases good results can be obtained 
by this approach before the instabilities destroy the solution (refs. 1 and 
2) .  The inverse problem can be made direct by iteration. However, 
improvements to a solution which gives an approximation to a desired body 
shape is not always apparent (ref,l), and thus solutions for complex body 
shapes are usually difficult to obtain. 

Since the steady flow equations are of a mixed 

More recently, tine-dependent, finite-difference techniques have been 
used with great success to solve the more difficult direct problem. (See 
refs. 6 to 1 1 ) .  This technique takes advantage of the hyperbolic nature of 
the unsteady flow equations by marching in time from an approximate initial 
condition to the desired steady-state solution. This problem is well posed 
and thus eliminates the instabilities that were mentioned earlier for t he  
inverse problem. This technique has been used successfully to compute the 
flow over very complex geometries. 

The purpose of the present paper is to describe such a time-dependent, 
finite-difference computer code, developed by the senior author, which has 

fields over axisymmetric bodies at zero degrees angle of attack. The code 
has the capability of calculating the flow of an ideal gas, CF,,, or air in 
chemical equilibrium and can be applied to reasonably general axisymmetric 
body shapes. The present paper gives a detailed description of the method 
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of s o l u t i o n  and p r e s e n t s  some comparisons o f  c a l c u l a t e d  resu l t s  w i t h  
e x p e r i m e n t a l  d a t a .  

SYMBOLS 

- -  
speed of  sound,  a/Vm a 

Bb 
body b l u n t n e s s  parameter 

s p e c i f i c  h e a t  a t  c o n s t a n t  p r e s s u r e  C 
P 

s p e c i f i c  hea t  a t  c o n s t a n t  volume C 
V 

pa rame te r s  d e f i n e d  by e q u a t i o n s  ( 1 6 )  

- -2 t o t a l  e n t h a l p y ,  H/V, H 

s t a t i c  e n t h a l p y ,  E / i E  h 

i n d i c a t o r ,  j = O  f o r  2-D f low,  j = 1  f o r  ax i symmet r i c  f low 

Mach number 

-2 p r e s s u r e ,  p/p,V, 
- -  

P 

p o l a r  c o o r d i n a t e s  (See f i g .  1 . )  

- 
R g a s  c o n s t a n t  f o r  C F 4 ,  94.475 J / k g - K  

r a d i u s  of  c u r v a t u r e  o f  nose ,  m 

- - -  
time, V m t / R b  

- 
t d imens iona l  t i m e ,  sec 

free-stream v e l o c i t y  , im/Vm= I 

d imens iona l  free-stream v e l o c i t y ,  m/sec 
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- 
velocity component normal to shock wave, ( v n I s / i m  

(v,)S 

velocity components in polar coordinate system (see fig. 11,  rSV6 V 

- 
vr/v, and /vm 

0 

- -  
Cartesian coordinates (see fig. 3 ) ,  x/Rb, ;lib 

location of pole of coordinate system (see fig. 31, 

shock wave angle 

normal distance between body and shock, m 

ratio of specific heats, c /c 
local shock layer thickness in radial direction (eq.(l2c)) 

step size in 0-direction 

step size in 6-direction 

artificial viscosity 

angle between tangent to body and line r = Constant 

angle between tangent to shock and line r = Constant 

derivative of Q with respect to r and + (eqs.(l2a) and (12d)) 

transformed coordinates defined by equations (9) and (IO) 

derivatives of 5 with respect to r and 4 (eqs. (12b) and ( 1 2 e ) )  

- 
x /R 
P b  

- -  
P V  

- -  
density, p/p, 

Superscripts: 

( -  1 dimensional quantity 
1 

0 predicted quantity 

Subscripts: 

b body 
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3 shock 

W wall 

W free stream 

max maximum 

METHOD 

This section presents a description of the time-dependent, finite- 
difference technique used to solve the inviscid two-dimensional or 
axisymmetric flow over a blunt-nosed body such as that shown in figure 1 .  
The domain of the solution includes the entire subsonic portion of the flow 
field with the downstream outflow boundary located in a region where the 
flow is completely supersonic. 

Flow-Field Equations 

The partial differential equations governing the two-dimensional or 
axisyrnmetric flow of an inviscid, nonconducting fluid in polar coordinates 
(fig. 1 )  are 

where 

V D - = -  a + v  , + A i  a 
Dt at r ar r a$ 

denotes the substantial derivative and j=O for two-dimensional flow and j=l 
for axisymmetric flow. 

Since entropy is constant along streamlines, the following relation can 
be written between pressure and density: 



De a2 Dm 
Dt Dt (4) 

which can be used in the continuity equation ( 1  
derivative to obtain the following equation: 

to replace the density 

Now equations (21, (31,  and ( 5 )  contain derivatives of p, vr, and v 
and are in a convenient form to solve for these variables. One other 
equation is needed to solve for a second thermodynamic variable. Since our 
interest is only in the steady flow solution, the integrated form of the 
energy equation is used 

only 
4 

2 2 

v + v  r 
2 H = h +  ( 6 )  

Although this will cause the time-varying solution to be inconsistent, it 
will yield consistent and accurate steady-state results. Now equations ( 2 ) ,  
(31 ,  ( 5 ) ,  and ( 6 )  contain six dependent variables (p, p ,  a, vr, v4, and h). 
To solve for these variables, two additional equations are needed. These 
can be obtained from the thermodynamic equation of state in the following 
functional form: 

The method of computing these properties for different gases will b e  
discussed in the section on thermodynamic properties. 

Computational Domain 

To make integration of this system of partial differential equations easier 

bounded by the stagnation streamline, the bow shock wave, a line + = 

(located in the supersonic flow region), and the body surface is mapped into 
a rectangular domain (fig. 2 )  using the transformation equations 

ay,d ';e f,eip with tf,e application of h ~ n . n A ~ m ~ r  U W U L I U l 2 . I  J n n n d i t i r r n c  C I V L L U I U I " . . " ,  t h e  r e g i m  ( f i g .  I ) 

'max 
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From these transformation equations, a set of transformation operators can 
b e  defined as 

where 

1 - -  - 
"r Ar 

5 ,  = 0 

which will transform the governing partial differential equations ( 2 ) ,  
and ( 5 )  into the following system 

( 3 )  

G 



where 

L 

a 'r avr 2 + 1 as, 
( g  arl + g~ as - r pAr an 

- = -  
at 

V 
g = -  r + v (la, Ar I$ r 

(1 4 )  

Numerical Procedure 

Interior grid points.- At a l l  interior grid points, the governing 
differential equations (eqs. ( 1 3 )  to ( 1 5 ) )  are integrated in time, using the 
Brailovskaya difference scheme (ref. 12).  This same technique has been used 
by Barnwell (ref. 9 )  for invisicd flow calculations and Carter (ref. 13) for 
viscous flow calculations. It is an explicit, predictor-corrector technique 
which uses forward time and centered spatial derivatives. 

When it is applied to a general partial differential equation of the 
form 

af ar 
at ax - + f - = O  

it yields the following result: 

Predictor step: 
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C o r r e c t o r  s t e p :  

where n i n d i c a t e s  t h e  time s t e p  and i i n d i c a t e s  the  s p a t i a l  g r i d  p o i n t .  

D i f f e r e n c i n g  a t  t h e  boundar ies . -  A t  t h e  shock, body s u r f a c e ,  and ou t f low 
b o u n d a r i e s ,  t h r e e - p o i n t ,  one-s ided  d i f f e r e n c e s  are  used for  the  s p a t i a l  
d e r i v a t i v e s  i n  a d i r e c t i o n  normal t o  the  boundary (see f i g .  2 )  i n  b o t h  t h e  
p r e d i c t o r  and c o r r e c t o r  s t e p s .  Thus,  t h e  same order a c c u r a c y  is main ta ined  
a t  t h e  boundar i e s  a s  a t  the  i n t e r i o r  p o i n t s .  Symmetry c o n d i t i o n s  are 
a p p l i e d  a l o n g  the  s t a g n a t i o n  s t r e a m l i n e .  

Shock-wave s o l u t i o n . -  A method similar t o  t h a t  used by Hamil ton and 
Graves ( r e f .  10)  has been used t o  track the  movement of t h e  shock wave 
d u r i n g  t h e  t r a n s i e n t  p o r t i o n  of t h e  s o l u t i o n .  The method c a n  be  summarized 
as  f o l l o w s .  (Details are g i v e n  i n  t h e  a p p e n d i x . )  F i r s t ,  t h e  p r e s s u r e  is 
computed on the  downstream of t h e  shock wave by u s i n g  the  two-step 
d i f f e r e n c e  scheme descr ibed p r e v i o u s l y .  With the  p r e s s u r e  a t  t h e  shock wave 
p known, t h e  d e n s i t y  is computed for  a n  ideal gas from the  e q u a t i o n  
S 

1 
1 + $Ps- P,) 

and t h e n  t h e  shock  v e l o c i t y  is computed from the  e q u a t i o n  

ps- ) 1 / 2  
1 v = ( V J ,  - ( 

1 - -  S ( 1 9 )  

where v 

movement o f  t h e  shock wave is computed from t h e  f o l l o w i n g  d i f f e r e n t i a l  
e q u a t i o n :  

and (vn) ,  are  d e f i n e d  i n  t he  sketches ir! the  appendix .  N e x t ,  t h e  S 

- -  dr s - -v /cosg, 
d t  3 

where 
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by u s i n g  the  f o l l o w i n g  two-step f i n i t e  d i f f e r e n c e  approx ima t ion :  

Pred i c  t o r  s t e p  : 

= r t  + At(Vs/coscs) t 
S 

C o r r e c t o r  s t e p :  

t+At = r t  + 0.5At((Vs/cos~s) t  + (is/cosSs) t + A t )  
( rs)  S 

(22 )  

( 2 3 )  

For CF and e q u i l i b r i u m  air  c h e m i s t r y ,  t h e  Y used  i n  e q u a t i o n  (18) is 

r e p l a c e d  by Y . (See s e c t i o n  on Thermodynamics.) Thus,  f o r  these cases t h e  

method of  t r a c k i n g  the  t r a n s i e n t  shock wave is approx ima te  d u r i n g  the ear ly  
p a r t  o f  t he  s o l u t i o n ,  b u t  becomes more e x a c t  as the  s t e a d y  s t a t e  is 
approached.  

4 

P 

D e r i v a t i v e s  a l o n g  t h e  shock, dr / dS ,  are c a l c u l a t e d  u s i n g  a noncen te red  
S 

f o u r - p o i n t  formula o f  t h e  form 

- 6rs  + 3 r s  + 2rs 1 dr S 1 ( ~ 1 ~  = ( r  
’i-2 i-1 i i + l  

( 2 4 )  

where i i n d i c a t e s  t h e  g r i d  p o i n t  l o c a t i o n .  Numerical e x p e r i m e n t a t i o n  has 
shown t h a t  t h i s  form o f  t h e  shock d e r i v a t i v e  p roduces  a much smoother 
converged shock t h a n  c e n t e r e d  d i f f e r e n c e s .  

Wall boundary c o n d i t i o n s . -  For i n v i s c i d  f low,  t h e  v e l o c i t y  must be  
t a n g e n t  t o  the wall ( i . e .  t h e  normal component o f  v e l o c i t y  m u s t  be  z e r o ) .  
T h i s  r e q u i r e s  t h a t  t h e  f o l l o w i n g  e q u a t i o n  be s a t i s f i e d  

where 
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E ar 
= t a n  -1 (r 1 a r b  -) = t a n  -1 A 2) 

b b as 'b 

Smoothing f u n c t i o n . -  Numerical e x p e r i m e n t a t i o n  has shown t h a t  t h e  
p r e s e n t  s o l u t i o n  converges much more r a p i d l y  and is less l i k e l y  t o  d i v e r g e  
f o r  a g iven  set  o f  i n i t i a l  c o n d i t i o n s  i f  a small amount o f  e x p l i c i t  
numer i ca l  smoothing is a p p l i e d  d u r i n g  the  i n t e g r a t i o n .  I n  t h e  p r e s e n t  
program, t h e  f o u r t h - o r d e r  smoother o f  Barnwell  ( r e f .  9 )  has been used. The 
smoothing is a p p l i e d  t o  the dependent  v a r i a b l e s  ( p ,  v r ,  and v i n  e q u a t i o n s  

( 1 3 )  th rough  ( 1 5 )  dur ing  t h e  the  c o r r e c t o r  s t e p .  Small v a l u e s  of  t h e  
smoothing c o e f f i c i e n t  of t he  o r d e r  of 0.02 are  t y p i c a l l y  used i n  the r e s u l t s  
p r e s e n t e d  i n  t he  p r e s e n t  pape r  and have been found a d e q u a t e  t o  damp o u t  
unwanted o s c i l l a t i o n s  w i t h o u t  d i s t o r t i n g  t h e  computed f low f i e l d .  

6 

I 

The wall boundary c o n d i t i o n  is a p p l i e d  u s i n g  the  f o l l o w i n g  p rocedure :  

1 .  The pressure a t  the wall (p,) is f i r s t  de te rmined  by i n t e g r a t i n g  

e q u a t i o n  ( 1 3 ) .  

2 .  The "e s t ima ted"  v a l u e s  f o r  t he  wall V e l o c i t y  components,  * * 
and ( v  ),, a re  o b t a i n e d  by i n t e g r a t i n g  e q u a t i o n s  ( 1 4 )  

( ' r ) w  0 
and (151, r e s p e c t i v e l y .  

3 .  The " f i n a l f 1  va lue  f o r  the  $-component of v e l o c i t y  a t  t h e  wall, 
(v$),, is o b t a i n e d  by combining e q u a t i o n  ( 2 5 )  w i t h  the 

e x p r e s s i o n  f o r  t o t a l  v e l o c i t y  t o  o b t a i n :  

( 2 6 )  

4 .  The " f i n a l "  va lue  for the r-component of v e l o c i t y  a t  t he  wall, 
( v ~ ) ~ ,  is then c a l c u l a t e d  from e q u a t i o n  ( 2 5 ) .  

5. Using these v a l u e s  of v e l o c i t y ,  t h e  wall e n t h a l p y ,  hW , is 

c a l c u l a t e d  from e q u a t i o n  ( 6 ) .  

T h i s  p rocedure  is a p p l i e d  a t  t h e  wall i n  bo th  the  p r e d i c t o r  and c o r r e c t o r  
s t e p s  of  t h e  i n t e g r a t i o n  p r o c e s s .  

S t a b i l i t y . -  The f l o w - f i e l d  e q u a t i o n s  are i n t e g r a t e d  i n  t he  p r e s e n t  
method u s i n g  t h e  rnaximun a l l o w a b l e  " l o c a l f 1  time s t e p  a t  each g r i d  p o i n t .  
T h i s  has been found t o  produce a lmos t  i d e n t i c a l  resul ts  as  s o l u t i o n s  
o b t a i n e d  u s i n g  t h e  minimum " g l o b a l "  time s t e p ,  b u t  t he  speed of convergence 
is  "approx ima te ly"  doubled. To estimate t h e  maximum a l l o w a b l e  l o c a l  time 
s t e p  t h e  f o l l o w i n g  approximate CFL r e l a t i o n  is used 
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(As Inin. 
( 2 8 )  1 1 1 /2  

At = 

IvrI + IvJ + a (- Ar + -1 rA@ 

where (As),in is the minimum local grid spacing. In actual applications, 
approximately 50 to 80 percent of the time step calculated from the above 
equation is used in the integration at each grid point. 

Thermodynamics 

To compute an actual flow field, density ( p >  and speed of sound (a) must 
be determined as a function of pressure and enthalpy (p and h). This is 
expressed in functional form by equations ( 7 )  and (8) .  For an ideal gas, 
these expressions are simply 

2 
a = (Y - 1)h (29b) 

Such simple closed form expressions are not possible for CF4. For this 
case, the expressions given by Sutton (ref. 14) have been used to obtain a 
curve fit of 

over range of temperatures from l o o o  to 1000° Kelvin. Thus, once h has been 

computed, 7 can be determined from the above curve fit, and 
computed from the thermally perfect equation of state: 

can b e  

- 
p = pRT 

where 
can then be determined from the expressions given by Sutton in (ref. 14). 

is the gas constant for CF,, (94.465 J/kg-K). The speed of sound (a) 

For air in chemical equilibrium, simple closed form expressions for p 

and For this case, Kenneth Sutton has 
developed a set of thermodynamic subroutines based on the approximate 
approach of Hanson (ref. 15) which yield all of the desired thermodynamic 
properties for air at high temperatures as a function of pressure and 

a2 are also impossible to obtain. 
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temperature. To use these subroutines in the present program, an iterative 
scheme was developed to enable all of the desired thermodynamic properties 
to be determined as a function of pressure and enthalpy. 

However, for both CF4 and equilibrium air, the computational time is 
greatly increased above that required for  an ideal gas if the thermodynamic 
routines are called for each time step. Thus a relatively simple procedure 
has been used which requires calling the thermodynamic subroutines only one 
time each 25 to 50 time steps. This procedure requires calling the 
thermodynamic subroutines at the first time step and evaluating the values 
of Y and Ya at each grid point which satisfy the equations: 

P 

Y 
P = (+)E 

P 

(32) 2 a = (Ya - 1)h 

These values of Y 

calculate the required values of p and a2 for each integration step. Since 
the flow-field quanities change slowly, these approximate values of p and a 
are sufficiently accurate to proceed with the solution. At regular 
intervals, the thermodynamic subroutines are called to up date the values of 
Y and Ya. As the result of several tests, using this procedure requires an 
update to the thermodynamics every 50 iterations. This reduces much of the 
computational overhead so that these types of solutions require only 15 to 
20 percent more time than an ideal gas solution. 

and Ya are stored and used in successive time steps to 
P 

2 

P 

Body Geometry 

The forward portion of the body geometries considered in the present 
- -  

paper have a projection in the x , y  plane that is described by the equation 
for a general conic section: 

-2 y - 2 i x -  b (33 )  

- 
where Rb is the radius of curvature at the stagnation point (where x = 0 )  

and Bb is a bluntness parameter. The bluntness parameter 
characterizes the eccentricity of the conic section. Its significance is 

Bb 
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Detter unders tood  if' I t  13 noted t h a t  

g e n e r a t e s  a p a r a b o l a ,  and B b  i 0 g e n e r a t e s  an e l l i p s e  ( w i t h  B 

s p e c i a l  c a s e  o f  a c i r c l e ) .  For an e l l i p s e ,  Bb is related t o  t h e  r a t i o  of 

t h e  major t o  minor a x e s  ( b / a )  by t h e  e q u a t i o n  

B < 0 g e n e r a t e s  a h y p e r b o l a ,  B b  = 0 

= 1 f o r  t h e  
b 

b 

2 Bb = ( b / a )  (34 1 

Some of the  body shapes  cons ide red  i n  the p r e s e n t  paper  were b l u n t e d  cones .  
These s h a p e s  can  be g e n e r a t e d  by u s i n g  e q u a t i o n  (33) t o  describe t h e  nose  
fo l lowed  by a s t r a i g h t  l i n e  segment t o  describe the  r ema in ing  downstream 
segment of the  body. 

RESULTS AND DISCUSSION 

I n  t h i s  s e c t i o n ,  r e s u l t s  o f  the p r e s e n t  method are compared w i t h  
e x p e r i m e n t a l  data and the r e s u l t s  o f  other numer i ca l  t e c h n i q u e s .  Two gases 
are c o n s i d e r e d :  a i r  w i t h  either idea l  g a s  and e q u i l i b r i u m  c h e m i s t r y ,  and 
CF4. 

c o n s i d e r e d  f o r  t he  ideal g a s  c a s e s ;  flow ove r  a sphere-cone  f o r  t he  
e q u i l i b r i u m  a i r  case; and f low over a s p h e r e  f o r  t h e  CF4 case. 
cases, 41 p o i n t s  are used  around the  body and 21 p o i n t s  are used  between t h e  
body and shock.  

Flow over  a s p h e r e ,  a p a r a b o l o i d ,  and two d i f f e r e n t  e l l i p s o i d s  is 

For  a l l  

A i r  

S u r f a c e  p r e s s u r e  d i s t r i b u t i o n s  on a s p h e r e  i n  a i r  f o r  Mach numbers o f  
2 . 0 ,  4.0,  and 8.06 and Y = 1.4 are g iven  i n  f i g u r e  4 .  To m a i n t a i n  a 
s u p e r s o n i c  o u t f l o w  boundary c o n d i t i o n ,  (0 was se t  e q u a l  t o  '15 d e g r e e s  f o r  

t he  two higher  Mach number cases and  55 degrees f o r  the Mach 2 case. 
Agreement between the  p r e s e n t  method and t h e  da ta  of r e f e r e n c e s  2 ,  5 ,  and 16  
is e x c e l l e n t .  Shock-layer  thicknesses f o r  each Mach number are g i v e n  i n  
f i g u r e  5. Again,  there is e x c e l l e n t  agreement  between the  p r e s e n t  method 
and t h e  numer i ca l  and expe r imen ta l  data a t  t h e  h ighe r  Mach numbers. 
However, a t  a Mach number o f  2.0,  there is a maximum d i f f e r e n c e  between t h e  
p r e s e n t  method and the  expe r imen ta l  data  of r e f e r e n c e  16 of  6 p e r c e n t .  
no ted  i n  r e f e r e n c e  5 ,  t h e  shock- layer  t h i c k n e s s  changes  r a p i d l y  a t  low Mach 
numbers; and t h u s ,  a small e r r o r  i n  the  t e s t  Mach number cou ld  be enough t o  
c a u s e  t h i s  d i f f e r e n c e  i n  r e s u l t s .  

max 

A s  

P r e s s u r e  d i s t r i b u t i o n s  on a p a r a b o l o i d  for Mach numbers o f  3 and 10  and 
Y = 1.4 are g i v e n  i n  f i g u r e  6 .  The data of the  p r e s e n t  method are i n  ve ry  
good agreement  wi th  t he  numerical  r e s u l t s  of r e f e r e n c e s  2 and  5 f o r  b o t h  
Mach numbers. Shock-layer thicknesses are compared i n  f i g u r e  7 ,  and a g a i n ,  
agreement  is v e r y  good. 



S u r f a c e  pressure d i s t r i b u t i o n s  f o r  e l l i p s o i d s  w i t h  b / a  = 0.5 and 1.5 are  
g iven  i n  f i g u r e s  8 and 9 f o r  Y = 1 . 4  and Mach numbers o f  4.0 and 8.06. 
Agreement between t h e  p r e s e n t  method and the  data  o f  r e f e r e n c e s  5 and 16 is 
e x c e l l e n t .  Shock-layer  t h i c k n e s s e s  f o r  t he  case where b / a  = 1 .5 a re  g iven  
i n  f i g u r e  10 .  Agreement is very good f o r  b o t h  Mach numbers. 

In f i g u r e s  1 1  and 1 2 ,  s u r f a c e  p r e s s u r e  d i s t r i b u t i o n s  and shock- l aye r  
t h i c k n e s s e s  are  given for f low over  a s p h e r i c a l l y  b l u n t e d  cone ,  where 
e q u i l i b r i u m  a i r  chemis t ry  is used .  Comparisons are  made w i t h  t h e  
computa t iona l  d a t a  o f  r e f e r e n c e s  17 and 18. Agreement is g e n e r a l l y  ve ry  
good e x c e p t  f o r  t h e  shock- l aye r  t h i c k n e s s  f o r  v a l u e s  of s/R > 2 . 5 ,  where t h e  

p r e s e n t  method p r o d u c e s  r e s u l t s  t h a t  are s l i g h t l y  h i g h e r  t h a n  t h e  o t h e r  da ta  
shown. 

b 

The s u r f a c e  p r e s s u r e  d i s t r i b u t i o n  on a sphere i n  CF is g i v e n  i n  f i g u r e  4 
1 3 .  The computer code d e s c r i b e d  i n  r e f e r e n c e  17 was used t o  g e n e r a t e  t h e  
data  f o r  comparison. The agreement is e x c e l l e n t .  The computed shock 
s t a n d o f f  d i s t a n c e  around the  body is shown i n  f i g u r e  1 4  a l o n g  w i t h  da ta  
g e n e r a t e d  by t h e  code o f  r e f e r e n c e  17 .  Again,  t h e  agreement  is e x c e l l e n t .  

C O N C L U D I N G  REMARKS 

A t ime-asymptot ic  method has been used t o  o b t a i n  s t eady- f low s o l u t i o n s  
f o r  ax i symmet r i c ,  i n v i s c i d  f low ove r  s e v e r a l  b l u n t  b o d i e s  i n c l u d i n g  s p h e r e s ,  
p a r a b o l o i d s ,  e l l i p s o i d s ,  and s p h e r i c a l l y  b l u n t e d  cones.  Comparisons w i t h  
e x p e r i m e n t a l  da t a  and r e s u l t s  o f  o t h e r  computa t iona l  methods have 
demonstrated t h a t  a c c u r a t e  s o l u t i o n s  can be o b t a i n e d  u s i n g  t h i s  approach.  
The method shou ld  prove u s e f u l  as a n  a n a l y s i s  t o o l  f o r  comparing w i t h  
e x p e r i m e n t a l  da t a  and f o r  making e n g i n e e r i n g  c a l c u l a t i o n s  f o r  b l u n t  r e e n t r y  
v e h i c l e s .  



A P P E N D I X  

C A L C U L A T I O N  OF P R O P E R T I E S  A T  SHOCK WAVE 

A method similar t o  t h a t  p r e s e n t e d  i n  r e f e r e n c e  10 has been used t o  
c a l c u l a t e  t h e  shock v e l o c i t y  and o t h e r  thermodynamic p r o p e r t i e s  a t  t h e  shock 
wave from t h e  p r e s s u r e .  
( a )  which c a n  be e x p r e s s e d  as a f u n c t i o n  of 9 ,  r = rs(t$) 

Cons ider  t h e  shock wave i l l u s t r a t e d  i n  t he  s k e t c h  

S 

\'. 

Sketch (a) 

The shock-wave a n g l e  B s  is given  by t h e  e q u a t i o n  

where 

I 

I 

and t h e  components of free-stream v e l o c i t y  t a n g e n t  and normal t o  t h e  shock  
wave are g i v e n ,  r e s p e c t i v e l y ,  by the  e q u a t i o n s  

15 



Changes in properties across the shock wave can be related to the 
normal component of free-stream velocity and the shock velocity, as 
illustrated in sketch (b). 

m h 

/ Shock - "s 

- .  

wave 

PS 

PS 

S 
h I 

I 

Sketch (b) 

Conditions across the shock can be related by the following normal shock- 
wave equation (since p, - 1 ) :  

C(Vn), - VS]' + c(vn)s - VSJ' 
2 = hs 2 

hap + 

Now rearranging equation (A6 ) ,  the following expression can be obtained: 

16  



Combining this equation with equation (A51 and solving for [(Vn), - Vs>2, 
the following result is obtained 

Similarly, equation (A61 becomes 

Equations (A91 and (A101 can be combined with the ideal-gas equation of 
Y -  ')h to yield the following result: state = p(Y 

Using this result, equation (A9) can be solved for the shock velocity Vs 

1 

1 - (VnIs - a[(Vn), - VsI + vs (A1 3 )  
S 

Thus the components of velocity downstream of the shock wave are simply 

(A1 4 )  (vrIs = -(VnIs cost, + V-  cos^ sinc 
S S 

17 



( A 1 5 )  S = (V ) sinr;, + VoD cosB, sinr; n s  

For CF,, or equilibrium air chemistry, the Y appearing in equation 
( A l l )  is replaced by Y . This allows the same shock wave routines to be 
used for these gases as for an ideal gas. Although this approach is 
inconsistent in the transient sense, it becomes more and more exact as the 
steady-state solution is approached. It also reduces the amount of work 
required to obtain converged solutions for these cases. 

P 
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